Affiliation:
1. College of Intelligent Equipment, Shandong University of Science and Technology, Taian 271019, China
Abstract
Aerial vehicle detection has significant applications in aerial surveillance and traffic control. The pictures captured by the UAV are characterized by many tiny objects and vehicles obscuring each other, significantly increasing the detection challenge. In the research of detecting vehicles in aerial images, there is a widespread problem of missed and false detections. Therefore, we customize a model based on YOLOv5 to be more suitable for detecting vehicles in aerial images. Firstly, we add one additional prediction head to detect smaller-scale objects. Furthermore, to keep the original features involved in the training process of the model, we introduce a Bidirectional Feature Pyramid Network (BiFPN) to fuse the feature information from various scales. Lastly, Soft-NMS (soft non-maximum suppression) is employed as a prediction frame filtering method, alleviating the missed detection due to the close alignment of vehicles. The experimental findings on the self-made dataset in this research indicate that compared with YOLOv5s, the mAP@0.5 and mAP@0.5:0.95 of YOLOv5-VTO increase by 3.7% and 4.7%, respectively, and the two indexes of accuracy and recall are also improved.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献