Enhancing Small Object Detection in Aerial Images: A Novel Approach with PCSG Model

Author:

An Kang1,Duanmu Huiping1ORCID,Wu Zhiyang1,Liu Yuqiang1,Qiao Jingzhen1,Shangguan Qianqian1,Song Yaqing1ORCID,Xu Xiaonong1

Affiliation:

1. The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China

Abstract

Generalized target detection algorithms perform well for large- and medium-sized targets but struggle with small ones. However, with the growing importance of aerial images in urban transportation and environmental monitoring, detecting small targets in such imagery has been a promising research hotspot. The challenge in small object detection lies in the limited pixel proportion and the complexity of feature extraction. Moreover, current mainstream detection algorithms tend to be overly complex, leading to structural redundancy for small objects. To cope with these challenges, this paper recommends the PCSG model based on yolov5, which optimizes both the detection head and backbone networks. (1) An enhanced detection header is introduced, featuring a new structure that enhances the feature pyramid network and the path aggregation network. This enhancement bolsters the model’s shallow feature reuse capability and introduces a dedicated detection layer for smaller objects. Additionally, redundant structures in the network are pruned, and the lightweight and versatile upsampling operator CARAFE is used to optimize the upsampling algorithm. (2) The paper proposes the module named SPD-Conv to replace the strided convolution operation and pooling structures in yolov5, thereby enhancing the backbone’s feature extraction capability. Furthermore, Ghost convolution is utilized to optimize the parameter count, ensuring that the backbone meets the real-time needs of aerial image detection. The experimental results from the RSOD dataset show that the PCSG model exhibits superior detection performance. The value of mAP increases from 97.1% to 97.8%, while the number of model parameters decreases by 22.3%, from 1,761,871 to 1,368,823. These findings unequivocally highlight the effectiveness of this approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3