Carbon Quantum Dots/Cu2O Photocatalyst for Room Temperature Selective Oxidation of Benzyl Alcohol

Author:

Tong Zhuang1,Liu Yunliang1,Wu Xin1,Cheng Yuanyuan1,Yu Jingwen1,Zhang Xinyue1,Liu Naiyun1,Liu Xiang2,Li Haitao1ORCID

Affiliation:

1. Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

2. Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China

Abstract

The luminescence properties and excellent carrier transfer ability of carbon quantum dots (CQDs) have attracted much attention in the field of photocatalysis. In this work, we loaded the CQDs on the surface of Cu2O to enhance the visible-light property of Cu2O. Furthermore, the composite was used for selective oxidation of benzyl alcohol to benzaldehyde. The composite catalyst achieved high selectivity (90%) for benzaldehyde at room temperature, leveraging its visible-light-induced electron transfer properties and its photocatalytic activity for hydrogen peroxide decomposition. ·OH was shown to be the main reactive oxygen species in the selective oxidation reaction of benzyl alcohol. The formation of heterostructures of CQDs/Cu2O promoted charge carrier separation and provided a fast channel for photoinduced electron transfer. This novel material exhibited enhanced levels of activity and stability for selective oxidation of benzyl alcohol. Potential applications of carbon quantum dot composites in conventional alcohol oxidation reactions are shown.

Funder

National Natural Science Foundation of China

Jiangsu University Jinshan Professor Fund

Jiangsu Specially Appointed Professor Fund

Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials

Zhenjiang “Jinshan Talents” Project 2021

China PostDoctoral Science Foundation

“Doctor of Entrepreneurship and Innovation” in Jiangsu Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3