Transforming Waste Clamshell into Highly Selective Nanostructured Catalysts for Solvent Free Liquid Phase Oxidation of Benzyl Alcohol

Author:

Saffari Nafiseh Sadat,Aghabarari BehzadORCID,Javaheri Masoumeh,Khanlarkhani AliORCID,Martinez-Huerta Maria Victoria

Abstract

High yield production of benzaldehyde in the solvent-free oxidation of benzyl alcohol by using green catalysts is highly desirable. In this work, calcium hydroxide derived from waste clamshell was used as low-cost and environmentally friendly catalyst support (CaSUP) for Pd and V nanoparticles. The physicochemical properties of the catalysts were analyzed using X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic oxidation of benzyl alcohol to benzaldehyde was studied in a liquid phase reaction by using H2O2 as an oxidizing agent. The effects of catalyst loading, the molar ratio of hydrogen peroxide to benzyl alcohol, temperature and reaction duration were investigated. In the optimized conditions, Pd nanoparticles supported on clamshell-derived supports displayed excellent catalytic conversion (88%) and selectivity to benzaldehyde (89%). Furthermore, the catalyst can be effectively reused without a significant loss in its activity and selectivity. The high yield and stability can be related to the structural and basic properties of the catalyst. These results provide important insights into the benzyl alcohol oxidation process for industrial applications.

Funder

Materials and Energy Research Center

Spanish National Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3