Dynamic Safety Assessment and Enhancement of Port Operational Infrastructure Systems during the COVID-19 Era

Author:

Wang Siqi1ORCID,Yin Jingbo1ORCID,Khan Rafi Ullah1ORCID

Affiliation:

1. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Seaports function as lifeline systems in maritime transportation, facilitating critical processes like shipping, distribution, and allied cargo handling. These diverse subsystems constitute the Port Infrastructure System (PIS) and have intricate functional interdependencies. The PIS is vulnerable to several external disruptions, and the impact of COVID-19 is severe and unprecedented in this domain. Therefore, this study proposes a novel general port safety framework to cope with recurring hazards and crisis events like COVID-19 and to augment PIS safety through a multi-state failure system. The PIS is divided into three critical subsystems: shipping, terminal, and distribution infrastructure, thereby capturing its functional interdependency and intricacy. A dynamic input–output model is employed, incorporating the spatial variability and average delay of the disruption, to determine the PIS resilience capacity under the stated disruptions. This study simulates three disruption scenarios and determines the functional failure capacity of the system by generating a functional change curve in Simulink. This study offers viable solutions to port managers, terminal operators, and concerned authorities in the efficient running of intricate interdependent processes and in devising efficient risk control measures to enhance overall PIS resilience and reliability. As part of future studies, given the difficulty in obtaining relevant data and the relatively limited validation of the current model, we aim to improve the accuracy and reliability of our model and enhance its practical applicability to real-world situations with data collected from a real-world case study of a PIS system.

Funder

Ministry of Industry and Information Technology for research on the key technology of the high-tech ocean passenger ship construction logistics collection system

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Maritime Transportation Operations with Emission Trading;Journal of Marine Science and Engineering;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3