The Study of Fishing Vessel Behavior Identification Based on AIS Data: A Case Study of the East China Sea

Author:

Xing Bowen1ORCID,Zhang Liang1,Liu Zhenchong2,Sheng Hengjiang3,Bi Fujia4,Xu Jingxiang1ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Zhongchuan NERC-SDT Co., Ltd., Shanghai 201114, China

3. Daishan County Transportation Bureau, Zhoushan 316299, China

4. Beijing Mingzhou Technology Co., Ltd., Beijing 316299, China

Abstract

The goal of this paper is to strengthen the supervision of fishing behavior in the East China Sea and effectively ensure the sustainable development of fishery resources. Based on AIS data, this paper analyzes three types of fishing boats (purse seine operation, gill net operation and trawl operation) and uses the cubic spline interpolation algorithm to optimize the ship trajectory and construct high-dimensional features. It proposes a new coding method for fishing boat trajectory sequences. This method uses the Geohash algorithm to divide the East China Sea into grids and generate corresponding numbers. Then, the ship trajectory is mapped to the grid, the fishing boat trajectory points are associated with the divided grid, and the ship trajectory ID is extracted from the corresponding grid. The extracted complete trajectory sequence passes through the CBOW (continuous bag of words) model, and the correlation of trajectory points is fully learned. Finally, the fishing boat trajectory is converted from coordinate sequence to trajectory vector, and the processed trajectory sequence is trained by the LightGBM algorithm. In order to obtain the optimal classification effect, the optimal superparameter combination is selected. We put forward a LightGBM algorithm based on the Bayesian optimization algorithm, and obtained the classification results of three kinds of fishing boats. The final result was evaluated using the F1_score. Experimental results show that the F1_score trained with the proposed trajectory vectorization method is the highest, with a training accuracy of 0.925. Compared to XgBoost and CatBoost, the F1_score increased by 1.8% and 1.2%, respectively. The results show that this algorithm demonstrates strong applicability and effectiveness in fishery area evaluations and is significant for strengthening fishery resource management.

Funder

Shanghai Science and Technology Committee (STCSM) Local Universities Capacity-building Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3