Improving the Maritime Traffic Evaluation with the Course and Speed Model

Author:

Lee Eui-Jong1ORCID,Kim Hyun-Suk1ORCID,Lee Eunkyu2ORCID,Kim Kyungsup3ORCID,Yu Yongung4,Lee Yun-Sok4

Affiliation:

1. SafeTechResearch, Deajeon 34050, Republic of Korea

2. Autonomous Ship Research Center, Samsung Heavy Industries, Daejeon 34051, Republic of Korea

3. Department of Computer Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

4. Department of Coast Guards Studies, Korea Maritime & Ocean University, Busan 49112, Republic of Korea

Abstract

Recent projections from marine transportation experts highlight an uptick in maritime traffic, attributed to the fourth industrial revolution’s technological strides and global economic rebound. This trend underscores the need for enhanced systems for maritime accident prediction and traffic management. In this study, to analyze the flow of maritime traffic macroscopically, spatiality and continuity reflecting the output of ships are considered. The course–speed (CS) model used in this study involved analyzing COG, ROT, speed, and acceleration, which can be obtained from the ship’s AIS data, and calculating the deviation from the standard plan. In addition, spatiality and continuity were quantitatively analyzed to evaluate the smoothness of maritime traffic flow. A notable finding is that, in the target sea area, the outbound and inbound CS indices are measured at 0.7613 and 0.7501, suggesting that the outbound ship flows are more affected than inbound ship flows to the liquidity of maritime traffic flow. Using the CS model, a detailed quantitative evaluation of the spatiality and continuity of maritime traffic is presented. This approach facilitates robust comparisons over diverse scales and periods. Moreover, the research advances our understanding of factors dictating maritime traffic flow based on ship attributes. The study insights can catalyze the development of a novel index for maritime traffic management, enhancing safety and efficiency.

Funder

National Research Foundation of Korea

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3