Improved UNet-Based Shoreline Detection Method in Real Time for Unmanned Surface Vehicle

Author:

Zhao Jiansen1ORCID,Song Fengchuan1ORCID,Gong Guobao2,Wang Shengzheng1ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

2. Navigation College, Dalian Maritime University, Dalian 116026, China

Abstract

Accurate and real-time monitoring of the shoreline through cameras is an invaluable guarantee for the safety of near-shore navigation and berthing of unmanned surface vehicles; existing shoreline detection methods cannot meet both these requirements. Therefore, we propose an improved shoreline detection method to detect shorelines accurately and in real time. We define shoreline detection as the combination of water surface area segmentation and edge detection, the key to which is segmentation. To detect shorelines accurately and in real time, we propose an improved U-Net for water segmentation. This network is based on U-Net, using ResNet-34 as the backbone to enhance the feature extraction capability, with a concise decoder integrated attention mechanism to improve the processing speed while ensuring the accuracy of water surface segmentation. We also introduce transfer learning to improve training efficiency and solve the problem of insufficient data. When obtaining the segmentation result, the Laplace edge detection algorithm is applied to detect the shoreline. Experiments show that our network achieves 97.05% MIoU and 40 FPS with the fewest parameters, which is better than mainstream segmentation networks, and also demonstrate that our shoreline detection method can effectively detect shorelines in real time in various environments.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3