The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin

Author:

Wang Yanan123,Cheng Xiulei4,Fan Kai5,Huo Zhipeng36,Wei Lin12

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. Key Laboratory of Strategy Evaluation for Shale Gas of Ministry of Land and Resources, China University of Geosciences, Beijing 100083, China

3. School of Resources and Materials, Northeastern University-Qinhuangdao Campus, Qinhuangdao 066004, China

4. No.1 Data Acquisition Branch Company, No.1 Geo-Logging Company, Daqing Drilling & Exploration Engineering Corporation, Daqing 163000, China

5. CNOOC EnerTech-Drilling & Production Co., Ltd., Tianjin 300452, China

6. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

Abstract

The organic-rich shale of the Permian Taiyuan Formation (TYF) and Shanxi Formation (SXF) in the Southern North China Basin (SNCB) is considered a potential shale gas source. The shale was formed in a marine-continental transitional sedimentary environment, which has rarely been studied, with the enrichment mechanisms of organic matter (OM) remaining unclear. This study investigated the controlling factors and enrichment mechanisms of OM by analyzing the total organic carbon (TOC) content, paleoclimate, paleoproductivity, sedimentation rate, redox, and paleosalinity. The TOC of the TYF ranged from 0.92 to 7.43 wt.%, with an average of 2.48 wt.%, which was higher than that of the SXF (TOC = 0.36–5.1 wt.%, average of 1.68 wt.%). These geochemical indices suggest that both the TYF and SXF were deposited in warm and humid paleoclimates, with relatively high biological productivity and sedimentation rates. During the deposition process, the TYF experienced frequent transgression and regression events, leading to an enhancement of water reducibility, a relatively high sedimentation rate, reduced OM oxidation, and rapid deposition of OM, which were conducive to the preservation of OM. Moreover, a high biological productivity increased respiratory oxygen consumption in the water column, which could lead to OM accumulation. However, the regression event experienced by the SXF reduced the paleoproductivity and sedimentation rate and increased water oxidation, leading to a decrease in OM. The main controlling factors for the enrichment of OM in the TYF and SXF were the sedimentation rate, paleoproductivity, and redox conditions, thus establishing the enrichment models for OM in the TYF and SXF. This study is conducive to understanding shale enrichment mechanisms and guiding shale gas exploration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing

Research on Exploration and Demonstration of Shale Gas in Henan Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3