Reservoir Characteristics of Marine–Continental Transitional Taiyuan Formation Shale and Its Influence on Methane Adsorption Capacity: A Case Study in Southern North China Basin

Author:

Jiang Wei12,Hu Yang12

Affiliation:

1. School of Earth Sciences and Engineering, Suzhou University, Suzhou 234000, China

2. National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou 234000, China

Abstract

To further study the reservoir characteristics and adsorption capacity of the Taiyuan Formation shale in the South North China Basin (SNCB), the pore structure and adsorption capacity of shale are discussed using various analysis tests, including elemental geochemistry, organic geochemistry, mineral composition, low-temperature nitrogen adsorption (LTNA), and methane adsorption experiments. The results indicate that the Taiyuan Formation shale formed in a poor oxygen and anaerobic sedimentary environment in still water. The average value of total organic carbon (TOC) content is 2.37%. The organic matter type mainly consists of type III kerogen. The vitinite reflectance (Ro) ranges from 3.11% to 3.50%. The clay mineral content varies greatly, averaging at 40.7%, while the quartz content averages at 37.7%. The Taiyuan Formation shale mainly develops interparticle (InterP) pores, followed by organic pores, intraparticle (IntraP) pores, solution pores, and microfractures. BET specific surface area (SSA) is between 9.47 m2/g and 22.14 m2/g, while pore volume (PV) ranges from 0.0098 cm3/g to 0.022 cm3/g, indicating favorable conditions for shale gas storage. According to the results of the CH4 adsorption experiment, Langmuir volume from Taiyuan Formation shales exhibits 1.35~4.30 cm3/g, indicating excellent adsorption capacity. TOC content shows a positive correlation with both Langmuir volume and BET SSA from Taiyuan Formation shales, suggesting that TOC plays a crucial role in controlling microscopic pores and gas adsorption capacity. Organic matter enhances the shale adsorption capacity by providing abundant pore SSA. Due to formation compaction, the pore size of clay minerals decreases, leading to an increase in pore SSA, while kaolinite exhibits weak hydrophilic ability. Consequently, with the increase in clay minerals and kaolinite content, the shale adsorption capacity is enhanced to a certain extent. However, an increase in the carbonate mineral content may result in a decrease in the proportion of clay minerals, therefore reducing the CH4 adsorption capacity of shale.

Funder

Doctoral Research Start-up Fund of Suzhou University

University Natural Science Research Project of Anhui Province

Research on predicting foundation pit deformation was based on the PSO-BP model

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3