Hydrothermal Factors Influence on Spatial-Temporal Variation of Evapotranspiration-Precipitation Coupling over Climate Transition Zone of North China

Author:

Yang ZesuORCID,Zhang Qiang,Zhang Yu,Yue Ping,Zhang Liang,Zeng Jian,Qi Yulei

Abstract

As a land–atmosphere coupling “hot spot”, the northern China climate transition zone has a sharp spatial gradient of hydrothermal conditions, which plays an essential role in shaping the spatial and temporal pattern of evapotranspiration-precipitation coupling, but whose mechanisms still remain unclear. This study analyzes the spatial and temporal variation in land–atmosphere coupling strength (CS) in the climate transitional zone of northern China and its relationship with soil moisture and air temperature. Results show that CS gradually transitions from strong positive in the northwest to negative in the southeast and northeast corners. The spatial distribution of CS is closely related to climatic hydrothermal conditions, where soil moisture plays a more dominant role: CS increases first, and then decreases with increasing soil moisture, with the threshold of soil moisture at 0.2; CS gradually transitions from positive to negative at soil moisture between 0.25 and 0.35; CS shows an exponential decreasing trend with increasing temperature. In terms of temporal variation, CS is strongest in spring and weakens sequentially in summer, autumn, and winter, and has significant interdecadal fluctuations. The trend in CS shifts gradually from significantly negative in the west to a non-significant positive in the east. Soil moisture variability dominates the intra-annual variability of CS in the study regions, and determines the interannual variation of CS in arid and semi-arid areas. Moreover, the main reason for the positive and negative spatial differences in CS in the study area is the different driving regime of evapotranspiration (ET). ET is energy-limited in the southern part of the study area, leading to a positive correlation between ET and lifting condensation level (LCL), while in most of the northern part, ET is water-limited and is negatively correlated with LCL; LCL has a negative correlation with P across the study area, thus leading to a negative ET-P coupling in the south and a positive coupling in the north.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3