Why does a decrease in cloud amount increase terrestrial evapotranspiration in a monsoon transition zone?

Author:

Liu WenhuiORCID,Yue Ping,Wu Xianghua,Li Junjun,Shao Naifu,Zhu Bin,Lu Chunsong

Abstract

Abstract Terrestrial evapotranspiration plays a critical role in drought monitoring and water resource management. Changes in evapotranspiration are significantly influenced by cloud-related precipitation and radiation effects. However, the impact of cloud amount (CA) on evapotranspiration through its influence on precipitation remains uncertain, especially in the transition zone affected by the East Asian summer monsoon (EASM), which limits the understanding of the water cycle. Therefore, this study deeply explores the impact of CA on evapotranspiration and its potential physical mechanisms in Northwest China. The results show that the correlation between 31-year average evapotranspiration and CA is negative only in the semi-arid region and is positive in other climatic regions of Northwest China. This unique negative correlation is related to the change of precipitation pattern in the semi-arid region caused by the weak EASM. Smaller CA in weak monsoons results in more short-wave radiation reaching the surface, larger sensible heat, and weaker convective inhibition. Consequently, the proportion of convective clouds (CCs) increases and precipitation from these CCs enhances evapotranspiration. Less CA increases evapotranspiration and potentially exacerbates aridity in the semi-arid region of Northwest China. These results emphasize the role of cloud type in evapotranspiration. It is well known that global warming can change cloud type with more CCs. Therefore, this study sheds new light on evapotranspiration change under global warming.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3