Abstract
Plant water use is an important function reflecting vegetation physiological status and affects plant growth, productivity, and crop/fruit quality. Although hyperspectral vegetation indices have recently been proposed to assess plant water use, limited sample sizes for established models greatly astricts their wide applications. In this study, we have managed to gather a large volume of continuous measurements of canopy spectra through proximally set spectroradiometers over the canopy, enabling us to investigate the feasibility of using continuous narrow-band indices to trace canopy-scale water use indicated by the stem sap flux density measured with sap flow sensors. The results proved that the newly developed D (520, 560) index was optimal to capture the variation of sap flux density under clear sky conditions (R2 = 0.53), while the best index identified for non-clear sky conditions was the D (530, 575) (R2 = 0.32). Furthermore, the bands used in these indices agreed with the reported sensitive bands for estimating leaf stomatal conductance which has a critical role in transpiration rate regulation over a short time period. Our results should point a way towards using proximal hyperspectral indices to trace tree water use directly.
Funder
National Natural Science Foundation of China
Guangxi Science & Technology Projects
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献