Forest Fire Detection of FY-3D Using Genetic Algorithm and Brightness Temperature Change

Author:

Dong Zhangyu,Yu Jinqiu,An Sen,Zhang Jin,Li Jinhui,Xu Daoli

Abstract

As one of China’s new generation polar-orbiting meteorological satellites, FengYun-3D (FY-3D) provides critical data for forest fire detection. Most of the existing related methods identify fire points by comparing the spatial features and setting thresholds empirically. However, they ignore temporal features that are associated with forest fires. Besides, they are difficult to generalize to multiple areas with different environmental characteristics. A novel method based on FY-3D combining the genetic algorithm and brightness temperature change detection is proposed in this work to improve these problems. After analyzing the spatial features of the FY-3D data, it adaptively detects potential fire points based on these features using the genetic algorithm, then filters the points with contextual information. To address the false alarms resulting from the confusing spectral characteristics between fire pixels and conventional hotspots, temporal information is introduced and the “MIR change rate” based on the multitemporal brightness temperature change is further proposed. In order to evaluate the performance of the proposed algorithm, several fire events occurring in different areas are used for testing. The Moderate-Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies/Fire products (MYD14) is chosen as the validation data to assess the accuracy of the proposed algorithm. A comparison of results demonstrates that the algorithm can identify fire points effectively and obtain a higher accuracy than the previous FY-3D algorithm.

Funder

Anhui Province Key R&D Program of China;Fundamental Research Funds for the Central Universities;Anhui Province Natural Science Foundation

Publisher

MDPI AG

Subject

Forestry

Reference46 articles.

1. Critical Review of Health Impacts of Wildfire Smoke Exposure

2. Climate change and disruptions to global fire activity

3. Abrupt increases in Amazonian tree mortality due to drought-fire interactions

4. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

5. A smoke detection algorithm based on discrete wavelet transform and correlation analysis;Wu;Proceedings of the 2012 Fourth International Conference on Multimedia Information Networking and Security,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3