Abstract
Purpose
The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.
Design/methodology/approach
Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models.
Findings
The presented fusing approach significantly improves the detection accuracy of fire incidents in the input data.
Research limitations/implications
The computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models.
Practical implications
The simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images.
Social implications
By this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high.
Originality/value
This study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.
Reference43 articles.
1. Wildland fires detection and segmentation using deep learning,2018
2. Human-started wildfires expand the fire niche across the United States;Proceedings of the National Academy of Sciences,2017
3. A UAV-based forest fire detection algorithm using convolutional neural network,2018
4. Experimental exploratory of temporal sampling forest in forest fire regression andclassification,2020
5. Forest fire detection of FY-3D using genetic algorithm and brightness temperature change;Forests,2022
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献