Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study

Author:

Ma Zimin,Wang Jiong,He Manchao,Gao Yubing,Hu Jinzhu,Wang Qiong

Abstract

The waste of coal resources, a complicated production process and slow mining speed seriously restrict the rapid development of longwall mining. To achieve effective mining, an innovative noncoal pillar mining approach (i.e., Gob-side Entry Retaining by Roof Cutting (GERRC)) was introduced. The mechanism of the GERRC approach and its three key technologies (i.e., roof support technology, directional presplit cumulative blasting technology and surrounding rock control technology) were studied by theoretical analysis, numerical simulation, laboratory and field experiments. The new approach was finally tested under medium-thick coal seam and compound roof conditions. The results show that the directional presplit cumulative blasting technology can effectively control the damage evolution in the roof rock, maintain the integrity of the entry roof and contribute the gob roof to the cave in time. The support technologies in different roof movement stages can control the entry surroundings, and the final section of the retained entry met the safety production requirements. The test results suggested that the proposed approach for coal effective mining is feasible, and the introduced key technologies and design methods potentially produce reasonable values for applications of pillarless mining in similar projects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Analysis of key block in the structure of voussoir beam in longwall mining;Qian;J. China Coal Soc.,1994

2. Stress distribution of coal pillar with gob-side entry driving in the process of excavation & mining;Zheng;J. Min. Saf. Eng.,2012

3. An innovative approach for gob-side entry retaining in highly gassy fully-mechanized longwall top-coal caving

4. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis

5. Adaptation assessment of gob-side entry retaining based on geological factors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3