A New Approach to Measuring the Similarity of Indoor Semantic Trajectories

Author:

Zhu Jin,Cheng Dayu,Zhang Weiwei,Song CiORCID,Chen Jie,Pei TaoORCID

Abstract

People spend more than 80% of their time in indoor spaces, such as shopping malls and office buildings. Indoor trajectories collected by indoor positioning devices, such as WiFi and Bluetooth devices, can reflect human movement behaviors in indoor spaces. Insightful indoor movement patterns can be discovered from indoor trajectories using various clustering methods. These methods are based on a measure that reflects the degree of similarity between indoor trajectories. Researchers have proposed many trajectory similarity measures. However, existing trajectory similarity measures ignore the indoor movement constraints imposed by the indoor space and the characteristics of indoor positioning sensors, which leads to an inaccurate measure of indoor trajectory similarity. Additionally, most of these works focus on the spatial and temporal dimensions of trajectories and pay less attention to indoor semantic information. Integrating indoor semantic information such as the indoor point of interest into the indoor trajectory similarity measurement is beneficial to discovering pedestrians having similar intentions. In this paper, we propose an accurate and reasonable indoor trajectory similarity measure called the indoor semantic trajectory similarity measure (ISTSM), which considers the features of indoor trajectories and indoor semantic information simultaneously. The ISTSM is modified from the edit distance that is a measure of the distance between string sequences. The key component of the ISTSM is an indoor navigation graph that is transformed from an indoor floor plan representing the indoor space for computing accurate indoor walking distances. The indoor walking distances and indoor semantic information are fused into the edit distance seamlessly. The ISTSM is evaluated using a synthetic dataset and real dataset for a shopping mall. The experiment with the synthetic dataset reveals that the ISTSM is more accurate and reasonable than three other popular trajectory similarities, namely the longest common subsequence (LCSS), edit distance on real sequence (EDR), and the multidimensional similarity measure (MSM). The case study of a shopping mall shows that the ISTSM effectively reveals customer movement patterns of indoor customers.

Funder

National Natural Science Foundation of China

Grant of State Key Laboratory of Resources and Environmental Information System

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3