Clustering Indoor Positioning Data Using E-DBSCAN

Author:

Cheng Dayu,Yue Guo,Pei TaoORCID,Wu Mingbo

Abstract

Indoor positioning data reflects human mobility in indoor spaces. Revealing patterns of indoor trajectories may help us understand human indoor mobility. Clustering methods, which are based on the measurement of similarity between trajectories, are important tools for identifying those patterns. However, due to the specific characteristics of indoor trajectory data, it is difficult for clustering methods to measure the similarity between trajectories. These characteristics are manifested in two aspects. The first is that the nodes of trajectories may have clear semantic attributes; for example, in a shopping mall, the node of a trajectory may contain information such as the store type and visit duration time, which may imply a customer’s interest in certain brands. The semantic information can only be obtained when the position precision is sufficiently high so that the relationship between the customer and the store can be determined, which is difficult to realize for outdoor positioning, either using GPS or mobile base station, due to the relatively large positioning error. If the tendencies of customers are to be considered, the similarity of geometrical morphology does not reflect the real similarity between trajectories. The second characteristic is the complex spatial shapes of indoor trajectory caused by indoor environments, which include elements such as closed spaces, multiple obstacles and longitudinal extensions. To deal with these challenges caused by indoor trajectories, in this article we proposed a new method called E-DBSCAN, which extended DBSCAN to trajectory clustering of indoor positioning data. First, the indoor location data were transformed into a sequence of residence points with rich semantic information, such as the type of store customer visited, stay time and spatial location of store. Second, a Weighted Edit Distance algorithm was proposed to measure the similarity of the trajectories. Then, an experiment was conducted to verify the correctness of E-DBSCAN using five days of positioning data in a shopping mall, and five shopping behavior patterns were identified and potential explanations were proposed. In addition, a comparison was conducted among E-DBSCAN, the k-means and DBSCAN algorithms. The experimental results showed that the proposed method can discover customers’ behavioral pattern in indoor environments effectively.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indoor mobility data encoding with TSTM-in: A topological-semantic trajectory model;Computers, Environment and Urban Systems;2024-06

2. Visitors' consistent stay behavior patterns within free-roaming scenic architectural complexes: Considering impacts of temporal, spatial, and environmental factors;Frontiers of Architectural Research;2024-04

3. Research and application of the global positioning system (GPS) clustering algorithm based on multilevel functions;Journal of Computational Methods in Sciences and Engineering;2024-03-14

4. GC-DBSCAN-Based Dynamic Target Recognition Method for Millimeter Wave Radar;2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC);2023-12-22

5. A close contact identification algorithm using kernel density estimation for the ship passenger health;Journal of King Saud University - Computer and Information Sciences;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3