Abstract
The GRF gene family plays an important role in plant growth and development as regulators involved in plant hormone signaling and metabolism. However, the Juglandaceae GRF gene family remains to be studied. Here, we identified 15, 15, 19, and 20 GRF genes in J. regia, C. illinoinensis, J. sigillata, and J. mandshurica, respectively. The phylogeny shows that the Juglandaceae family GRF is divided into two subfamilies, the ε-group and the non-ε-group, and that selection pressure analysis did not detect amino acid loci subject to positive selection pressure. In addition, we found that the duplications of the Juglandaceae family GRF genes were all segmental duplication events, and a total of 79 orthologous gene pairs and one paralogous homologous gene pair were identified in four Juglandaceae families. The Ka/KS ratios between these homologous gene pairs were further analyzed, and the Ka/KS values were all less than 1, indicating that purifying selection plays an important role in the evolution of the Juglandaceae family GRF genes. The codon bias of genes in the GRF family of Juglandaceae species is weak, and is affected by both natural selection pressure and base mutation, and translation selection plays a dominant role in the mutation pressure in codon usage. Finally, expression analysis showed that GRF genes play important roles in pecan embryo development and walnut male and female flower bud development, but with different expression patterns. In conclusion, this study will serve as a rich genetic resource for exploring the molecular mechanisms of flower bud differentiation and embryo development in Juglandaceae. In addition, this is the first study to report the GRF gene family in the Juglandaceae family; therefore, our study will provide guidance for future comparative and functional genomic studies of the GRF gene family in the Juglandaceae specie.
Funder
National Natural Science Foundation of China
the important National Science and Technology Specific projects of Xinjiang
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献