Genome-Wide Identification and Characterization of the GRF Gene Family in Melastoma dodecandrum

Author:

Huang Jie,Chen Gui-Zhen,Ahmad SagheerORCID,Hao Yang,Chen Jin-Liao,Zhou Yu-Zhen,Lan Si-Ren,Liu Zhong-JianORCID,Peng Dong-Hui

Abstract

Growth-regulating factor (GRF) is a kind of transcription factor unique to plants, playing an important role in the flowering regulation, growth, and development of plants. Melastoma dodecandrum is an important member of Melastomataceae, with ornamental, medicinal, and edible benefits. The identification of the GRF gene family in M. dodecandrum can help to improve their character of flavor and continuous flowering. The members of the GRF gene family were identified from the M. dodecandrum genome, and their bioinformatics, selective pressure, and expression patterns were analyzed. The results showed that there were 20 GRF genes in M. dodecandrum. Phylogenetic analysis showed that the 71 GRF genes from M. dodecandrum, Arabidopsis thaliana, Camellia sinensis, and Oryza sativa can be divided into three clades and six subclades. The 20 GRF genes of M. dodecandrum were distributed in twelve chromosomes and one contig. Furthermore, the gene structure and motif analysis showed that the intron and motif within each clade were very similar, but there were great differences among different clades. The promoter contained cis-acting elements related to hormone induction, stress, and growth and development. Different transcriptomic expression of MdGRFs indicated that MdGRFs may be involved in regulating the growth and development of M. dodecandrum. The results laid a foundation for further study on the function and molecular mechanism of the M. dodecandrum GRF gene family.

Funder

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3