Author:
Jiang Yifei,Liu Xuhui,Zhou Mingao,Yang Jian,Ke Simin,Li Yangsheng
Abstract
The cAMP-dependent protein kinase A, cGMP-dependent protein kinase G and phospholipid-dependent protein kinase C (AGC) perform various functions in plants, involving growth, immunity, apoptosis and stress response. AGC gene family is well described in Arabidopsis, however, limited information is provided about AGC genes in rice, an important cereal crop. This research studied the AGC gene family in the AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza nivara, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula and Oryza longistaminata were searched and classified into six subfamilies, and it was found that these species have similar numbers of members. The analysis of gene duplication and selection pressure indicated that the AGC gene family expanded mainly by segmental or whole genome duplication (WGD), with purifying selection during the long evolutionary period. RNA-seq analysis revealed that OsAGCs of subfamily V were specifically highly expressed in leaves, and the expression patterns of these genes were compared with that of photosynthesis-related genes using qRT-PCR, discovered that OsAGC9, OsAGC20, and OsAGC22 might participate in photosynthesis. These results provide an informative perspective for exploring the evolutionary of AGC gene family and its practical application in rice.
Funder
National Key Research and Development Program of China
National Special Key Project for Transgenic Breeding
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献