CNN Deep Learning with Wavelet Image Fusion of CCD RGB-IR and Depth-Grayscale Sensor Data for Hand Gesture Intention Recognition

Author:

Ding Ing-Jr,Zheng Nai-Wei

Abstract

Pixel-based images captured by a charge-coupled device (CCD) with infrared (IR) LEDs around the image sensor are the well-known CCD Red–Green–Blue IR (the so-called CCD RGB-IR) data. The CCD RGB-IR data are generally acquired for video surveillance applications. Currently, CCD RGB-IR information has been further used to perform human gesture recognition on surveillance. Gesture recognition, including hand gesture intention recognition, is attracting great attention in the field of deep neural network (DNN) calculations. For further enhancing conventional CCD RGB-IR gesture recognition by DNN, this work proposes a deep learning framework for gesture recognition where a convolution neural network (CNN) incorporated with wavelet image fusion of CCD RGB-IR and additional depth-based depth-grayscale images (captured from depth sensors of the famous Microsoft Kinect device) is constructed for gesture intention recognition. In the proposed CNN with wavelet image fusion, a five-level discrete wavelet transformation (DWT) with three different wavelet decomposition merge strategies, namely, max-min, min-max and mean-mean, is employed; the visual geometry group (VGG)-16 CNN is used for deep learning and recognition of the wavelet fused gesture images. Experiments on the classifications of ten hand gesture intention actions (specified in a scenario of laboratory interactions) show that by additionally incorporating depth-grayscale data into CCD RGB-IR gesture recognition one will be able to further increase the averaged recognition accuracy to 83.88% for the VGG-16 CNN with min-max wavelet image fusion of the CCD RGB-IR and depth-grayscale data, which is obviously superior to the 75.33% of VGG-16 CNN with only CCD RGB-IR.

Funder

Ministry of Science and Technology (MOST) in Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3