Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm

Author:

Li ChaoORCID,Zhai Rongrong,Yang Yongping

Abstract

Of all the renewable power generation technologies, solar tower power system is expected to be the most promising technology that is capable of large-scale electricity production. However, the optimization of heliostat field layout is a complicated process, in which thousands of heliostats have to be considered for any heliostat field optimization process. Therefore, in this paper, in order to optimize the heliostat field to obtain the highest energy collected per unit cost (ECUC), a mathematical model of a heliostat field and a hybrid algorithm combining particle swarm optimization algorithm and genetic algorithm (PSO-GA) are coded in Matlab and the heliostat field in Lhasa is investigated as an example. The results show that, after optimization, the annual efficiency of the heliostat field increases by approximately six percentage points, and the ECUC increases from 12.50 MJ/USD to 12.97 MJ/USD, increased about 3.8%. Studies on the key parameters indicate that: for un-optimized filed, ECUC first peaks and then decline with the increase of the number of heliostats in the first row of the field (Nhel1). By contrast, for optimized field, ECUC increases with Nhel1. What is more, for both the un-optimized and optimized field, ECUC increases with tower height and decreases with the cost of heliostat mirror collector.

Funder

National Major Fundamental Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3