Large-Scale Optimization among Photovoltaic and Concentrated Solar Power Systems: A State-of-the-Art Review and Algorithm Analysis

Author:

Wang Yi’an12ORCID,Wu Zhe2,Ni Dong13

Affiliation:

1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore

3. College of Integrated Circuits, Zhejiang University, Hangzhou 310027, China

Abstract

Large-scale optimization (LSO) problems among photovoltaic (PV) and concentrated solar power (CSP) systems are attracting increasing attention as they help improve the energy dispatch efficiency of PV and CSP systems to minimize power costs. Therefore, it is necessary and urgent to systematically analyze and summarize various LSO methods to showcase their advantages and disadvantages, ensuring the efficient operation of hybrid energy systems comprising different PV and CSP systems. This paper compares and analyzes the latest LSO methods for PV and CSP systems based on meta-heuristic algorithms (i.e., Particle Swarm Optimization, Genetic Algorithm, Enhanced Gravitational Search Algorithm, and Grey Wolf Optimization), numerical simulation and stochastic optimization methods (i.e., Constraint Programming, Linear Programming, Dynamic Programming Optimization Algorithm, and Derivative-Free Optimization), and machine learning-based AI methods (Double Grid Search Support Vector Machine, Long Short-Term Memory, Kalman Filter, and Random Forest). An in-depth analysis and A comparison of the essence and applications of these algorithms are conducted to explore their characteristics and suitability for PV and CSP or hybrid systems. The research results demonstrate the specificities of different LSO algorithms, providing valuable insights for researchers with diverse interests and guiding the selection of the most appropriate method as the solution algorithm for LSO problems in various PV and CSP systems. This also offers useful references and suggestions for extracting research challenges in LSO problems of PV and CSP systems and proposing corresponding solutions to guide future research development.

Funder

National Key Research and Development Program of China

National University of Singapore

the program of A*STAR MTC YIRG 2022 Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3