RC Medium-Rise Building Damage Sensitivity with SSI Effect

Author:

Gaile Liga,Ratnika Lasma,Pakrastins LeonidsORCID

Abstract

Global vibration-based methods in the field of structural health monitoring are intended to capture structural stiffness changes of buildings or other civil engineering structures. Natural frequencies of buildings or bridges are commonly used parameters to monitor these stiffness changes. Therefore, it is essential to clarify the limit at which this method is no longer sensitive enough to be useful for structural health monitoring purposes. This paper numerically investigates the effect of structural damage and soil–structure interaction on cellular-type reinforced concrete buildings’ natural frequencies. These buildings are a common housing stock of Eastern Europe but are rarely investigated in this context. Comparisons with a reinforced concrete frame and infill structure building are made. Finite element models representing three structural system types of nine-story reinforced concrete buildings were used for the numerical simulations. Furthermore, a five-story finite element model was used for a damage sensitivity comparison. It is established that, for cellular-type structure buildings to detect damage comparable to that investigated in the paper, structural health (fixed base model frequency) should be monitored directly. Then, a statistical significance level for frequency changes of no more than 0.1% should be adopted. Conversely, the rocking frequency is a very sensitive parameter to monitor building base condition changes. These changes are often a cause of the cracking of building elements.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3