Empirical Case Study on Applying Artificial Intelligence and Unmanned Aerial Vehicles for the Efficient Visual Inspection of Residential Buildings

Author:

Shin Hyunkyu1,Kim Jonghoon2,Kim Kyonghoon3,Lee Sanghyo4

Affiliation:

1. Sustainable Smart City Convergence Educational Research Center, Hanyang University ERICA, Ansan 15588, Republic of Korea

2. Department of Architectural Systems Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea

3. Post-Construction Evaluation and Management Center, Department of Construction Policy Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea

4. Department of Smart Convergence Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea

Abstract

Continuous inspections and observations are required to preserve the safety and condition of buildings. Although the number of deteriorated buildings has increased over the years, traditional inspection methods are still used. However, this approach is time-consuming, costly, and carries the risk of poor inspection owing to the subjective intervention of the inspector. To overcome these limitations, many recent studies have developed advanced inspection methods by integrating unmanned aerial vehicles (UAVs) and artificial intelligence (AI) methods during the visual inspection stage. However, the inspection approach using UAV and AI can vary in operation and data acquisition methods depending on the building structures. Notably, in the case of residential buildings, it is necessary to consider how to operate UAVs and how to apply AI due to privacy issues of residents and various exterior contour shapes. Thus, an empirical case study was adopted in this study to explore the integration of UAVs and artificial intelligence (AI) technology to inspect the condition of structures, focusing on residential buildings. As a result, this study proposed the field-adopted UAV operation method and AI-based defect detection model for adopting the residential buildings. Moreover, the lessons learned from holistic and descriptive analyses, which include drone application limitations, points of improvement of data collection, and items to be considered when AI and UAV based inspection for residential buildings, are summarized in this paper. The discussed problems and results derived from this study can contribute to future AI- and UAV-based building inspections.

Funder

Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3