Affiliation:
1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China
2. COSCO Shipping Seafarer Management Co., Ltd., Dalian Branch, Dalian 116026, China
Abstract
There are inevitable multiphase flow problems in the process of subsea oil-gas acquisition and transportation, of which the two-phase flow involving gas and liquid is given much attention. The performance of pipelines and equipment in subsea systems is greatly affected by various flow patterns. As a result, correctly and efficiently identifying the flow pattern in a pipeline is critical for the oil and gas industry. In this study, two attention modules, the convolutional block attention module (CBAM) and efficient channel attention (ECA), are introduced into a convolutional neural network (ResNet50) to develop a gas–liquid two-phase flow pattern identification model, which is named CBAM-ECA-ResNet50. To verify the accuracy and efficiency of the proposed model, a collection of gas–liquid two-phase flow pattern images in a vertical pipeline is selected as the dataset, and data augmentation is employed on the training set data to enhance the generalization capability and comprehensive performance of the model. Then, comparison models similar to the proposed model are obtained by adjusting the order and number of the two attention modules in the two positions and by inserting other different attention modules. Afterward, ResNet50 and all proposed models are applied to classify and identify gas–liquid two-phase flow pattern images. As a result, the identification accuracy of the proposed CBAM-ECA-ResNet50 is observed to be the highest (99.62%). In addition, the robustness and complexity of the proposed CBAM-ECA-ResNet50 are satisfactory.
Funder
Postdoctoral Funding of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献