Real-Time Detection of Slug Flow in Subsea Pipelines by Embedding a Yolo Object Detection Algorithm into Jetson Nano

Author:

Qiao Weiliang12ORCID,Guo Hongtongyang1,Huang Enze1,Su Xin1,Li Wenhua1ORCID,Chen Haiquan1

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. School of Maritime and Economics, Dalian Maritime University, Dalian 116026, China

Abstract

In the multiple-phase pipelines in terms of the subsea oil and gas industry, the occurrence of slug flow would cause damage to the pipelines and related equipment. Therefore, it is very necessary to develop a real-time and high-precision slug flow identification technology. In this study, the Yolo object detection algorithm and embedded deployment are applied initially to slug flow identification. The annotated slug flow images are used to train seven models in Yolov5 and Yolov3. The high-precision detection of the gas slug and dense bubbles in the slug flow image in the vertical pipe is realized, and the issue that the gas slug cannot be fully detected due to being blocked by dense bubbles is solved. After model performance analysis, Yolov5n is verified to have the strongest comprehensive detection performance, during which, mAP0.5 is 93.5%, mAP0.5:0.95 is 65.1%, and comprehensive mAP (cmAP) is 67.94%; meanwhile, the volume of parameters and Flops are only 1,761,871 and 4.1 G. Then, the applicability of Yolov5n under different environmental conditions, such as different brightness and adding random obstructions, is analyzed. Finally, the trained Yolov5n is deployed to the Jetson Nano embedded device (NVIDIA, Santa Clara, CA, USA), and TensorRT is used to accelerate the inference process of the model. The inference speed of the slug flow image is about five times of the original, and the FPS has increased from 16.7 to 83.3.

Funder

Postdoctoral Funding of China

National Natural Science Foundation of China

Central Guidance on Local Science and Technology Development Fund of Liaoning Province

LiaoNing Revitalization Talents Program

111 Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3