A Task Allocation Method for Multi-AUV Search and Rescue with Possible Target Area

Author:

Cai  Chang1ORCID,Chen Jianfeng1ORCID,Ayub Muhammad Saad1,Liu Fen1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Task allocation is crucial for autonomous underwater vehicle (AUV) collaboration in multi-AUV maritime search and rescue missions. In real projects, there are possible target areas existing in task areas, which are not expected to be divided. Motivated by such a special situation, this paper proposes an area partitioning method to allocate the task to multiple AUVs and maintain the possible target area as a whole. First, the spatial structure of the task area is defined by the spiked Morse decomposition, which divides the task area according to a set of angles. Then, we perform a variational transformation to determine the optimal angles using the AUV order. Next, a customized backtracking method is introduced to determine the optimal AUV order which divides the task area among the multiple AUVs without disturbing the possible target areas. The proposed methodology is validated under various challenging scenarios using a different number of AUVs. The empirical results show that the divided possible target areas and workload variance were superior to the comparison methods. This indicates that the proposed method can generate stable solutions that effectively reduce the segmentation of possible target areas and keep the workload of the multiple AUVs balanced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Form of Differential Evolutionary and Gray Wolf Algorithm for Multi-AUV Task Allocation in Target Search;Electronics;2023-11-08

2. N-Queens Convergence: A Tactical Framework for Efficient Target-Directed Drone Formations and Attacks;2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3