An Origami Flexiball-Inspired Soft Robotic Jellyfish

Author:

Hu Fuwen1ORCID,Kou Zichuan1,Sefene Eyob Messele2ORCID,Mikolajczyk Tadeusz3ORCID

Affiliation:

1. School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China

2. Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia

3. Department of Production Engineering, Bydgoszcz University of Science and Technology, 7 S. Kaliskiego Ave., 85-796 Bydgoszcz, Poland

Abstract

Both the biomimetic design based on marine life and the origami-based design are recommended as valuable paths for solving conceptual and design problems. The insights into the combination of the two manners inspired this research: an origami polyhedra-inspired soft robotic jellyfish. The core idea of the story is to leverage the deformation mechanism of the origami metamaterial to approximate the jet-propelled swimming behavior of the prolate medusae. First, four possible variants of origami polyhedra were compared by the hydrodynamic simulation method to determine a suitable model for the soft body of robotic jellyfish. Second, the mathematical model for the jet propulsion performance of the soft origami body was built, and the diameter of the jet nozzle was determined through the simulation method. Third, the overall configuration and the rope-motor-driven driving method of the soft robotic jellyfish were presented, and the prototype was developed. The experimental work of jet swimming, thrust forces measurement, and cost of transport further demonstrated the presented soft robotic jellyfish. In addition, the prospective directions were also discussed to improve maneuverability, sensory perception, and morphological improvement. Due to the advantages, including but not limited to, the concise structure, low cost, and ease of manufacture, we anticipate the soft robotic jellyfish can serve for the ecological aquatic phenomena monitoring and data collection in the future.

Funder

Ministry of Education of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3