Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics

Author:

Hu Fuwen1ORCID,Wang Wei1,Cheng Jingli1,Bao Yunchang1

Affiliation:

1. School of Mechanical and Material Engineering, North China University of Technology, Beijing, China

Abstract

Recent advances in three-dimensional printing technologies provide one way not only to speed up freeform fabrication but also to exert programmable control over mechanical properties. Besides, origami-inspired structures, origami-inspired metamaterials, and even origami-inspired robotics primarily demonstrate the promising potential for innovative inspirations of engineering solutions. The motivation of this work is to explore a fully programmable robotic perspective with a fusion of programmable metamaterials, programmable mechanics, and programmable fabrication. First, we proposed an illustrative roadmap for transforming an origami model into a fully programmable robotic system. Then, we introduced an origami spring model and revealed its shape-shifting geometry and intrinsic metamaterial mechanisms, especially the rarely switchable behavior from transverse compression to longitudinal stretchability, and the curvilinear deployment. Furthermore, we addressed the fabrication challenges of three-dimensional printable origami sheets considering three-dimensional printability, foldability with high elasticity, and good damage tolerance. Finally, we developed a fully soft manipulator in terms of the highly reversible compressibility of origami spring metamaterials. And we also devised a peristaltic crawling robot with undulatory movements induced by inclination deployment effect of origami spring metamaterials. Conceivably, the proposed fully programmable robotic system was demonstrated starting from programmable metamaterials, programmable mechanics, and programmable fabrication to programmable robotic behaviors. The contribution of this work also suggested that robotic morphing could be tunable by hierarchical programming from modeling and fabrication to actions.

Funder

the planning subject for the 13th five-year plan of Beijing education sciences

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3