Control Parameters Optimization of Accumulator in Hydraulic Power Take-Off System for Eccentric Rotating Wave Energy Converter

Author:

Xue Gang12,Zhang Zhenquan1,Qin Jian1,Huang Shuting1,Liu Yanjun12

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

2. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China

Abstract

To improve the efficiency and stability of an eccentric rotating wave energy converter (ERWEC), the adaptive hydraulic power-take-off (PTO) system with an accumulator is designed and developed. Experiments are performed to analyze the effects of trigger pressure, delay time, and open state duration on average output power and power fluctuation index. The results show that the effects of those three control parameters of accumulator on output power are strongly coupled. The experimental examples are designed based on the optimal Latin hypercube sampling (OLHS) method, and the nonparameterized agent models of control parameters to output power indices are established based on the Gaussian process regression (GPR) method. With the help of sensitivity analysis, it is found that the coupled effect of delay time and open state duration on the power fluctuation index is greater than that on the average output power. Furthermore, the optimal combination of control parameters is obtained by non-dominated sorting genetic algorithm-III (NSGA-III), which improves the amount and stability of output power from a hydraulic PTO system. This paper is of important significance for parameter setting of hydraulic PTO systems with an accumulator for wave energy converter, and provides the basis for the real-time adjustment of control parameters under complex sea conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3