Design and Performance Evaluation of an Enclosed Inertial Wave Energy Converter with a Nonlinear Stiffness Mechanism

Author:

Qin Jian1,Zhang Zhenquan1,Song Xuening1,Huang Shuting1,Liu Yanjun12ORCID,Xue Gang12

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

2. School of Mechanical Engineering, Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China

Abstract

In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinear EIWEC was established based on the Cummins equation and the equivalent magnetic charge method, and the joint simulations were carried out using MATLAB/Simulink 2020 and AMESim 2020 softwares. The effect of the magnetic nonlinear stiffness mechanism (NSM) on the performance of the EIWEC system was investigated. The results show that the nonlinear negative stiffness property of NSM can significantly improve the motion response and output power of EIWEC under low-frequency waves. Compared to EIWEC without NSM (linear EIWEC), nonlinear EIWEC has a higher generation efficiency and wider frequency bandwidth. Additionally, the effects of linear spring, internal mass body, and hydraulic power take-off (PTO) system parameters on the energy conversion capability of the system were analyzed to provide a reference for the design of nonlinear EIWECs. In general, the proposed nonlinear EIWEC could provide good development potential for the scale utilization of wave energy resources.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3