Abstract
The severe shot peening process was applied to the notched specimens from an AW 7075 alloy with the aim to improve fatigue endurance in the very-high cycle fatigue region. To reveal the stress state in the notch vicinity, finite element analysis was performed, simulating the conditions of the used 20 kHz ultrasonic fatigue loading. Modified surface characteristics by the severe shot peening process were analyzed in terms of residual stress distribution measured by X-ray diffraction methods and near-surface microstructural observations by scanning electron microscopy. The applied severe shot peening increased the fatigue limit by 11%; however, the positive effect was recorded only for the loading amplitudes corresponding to the fatigue lifetimes in the range 107–109 cycles. At higher loading amplitudes, the fatigue properties tended to decrease, most likely due to accelerated fatigue crack initiation on the surface damage features created by the peening process and also by rapid residual stress relaxation.
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献