Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes

Author:

Chen Yisong,Hu XuORCID,Liu Jiahui

Abstract

Numerous studies concerning the life cycle assessment of fuel cell vehicles (FCVs) have been conducted. However, little attention has been paid to the life cycle assessment of an FCV from the perspective of the detailed vehicle components. This work conducts the life cycle assessment of Toyota Mirai with all major components considered in a Chinese context. Both the vehicle cycle and the fuel cycle are included. Both comprehensive resources and energy consumption and comprehensive environmental emissions of the life cycles are investigated. Potential environmental impacts are further explored based on CML 2001 method. Then different hydrogen production schemes are compared to obtain the most favorable solution. To explore the potential of the electrolysis, the scenario analysis of the power structure is conducted. The results show that the most mineral resources are consumed in the raw material acquisition stage, the most fossil energy is consumed in the use stage and global warming potential (GWP) value is fairly high in all life cycle stages of Toyota Mirai using electrolyzed hydrogen. For hydrogen production schemes, the scenario analysis indicates that simply by optimizing the power structure, the environmental impact of the electrolysis remains higher than other schemes. When using the electricity from hydropower or wind power, the best choice will be the electrolysis.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3