Life Cycle Assessment of Selected Ammonia Production Technologies From the Perspective of Ammonia as a Fuel for Heavy-Duty Vehicle

Author:

Proniewicz Mateusz1,Petela Karolina1,Szlęk Andrzej1,Adamczyk Wojciech1

Affiliation:

1. Silesian University of Technology Department of Thermal Technology, , Konarskiego 22, Gliwice 44-100 , Poland

Abstract

Abstract One of the promising options for the decarbonization of industry dependent on heavy-duty vehicles is to use alternative fuels such as ammonia. The study investigates the environmental impact of five selected ammonia production technologies and compares them to diesel fuel: ammonia based on hydrogen from steam methane reforming (gray), ammonia based on steam methane reforming with carbon capture and storage (blue), ammonia based on hydrogen from electrolysis with electrical energy supplied by: PV (green PV), wind (green wind), and nuclear plant (pink). Environmental impact is assessed using the ReCiPE method based on three midpoint and two endpoint categories: climate change, fossil depletion, freshwater consumption, human health, and ecosystem quality. The climate change results per 1 MJ (LHV) are as follows: gray ammonia at 0.148 kg CO2 eq., blue ammonia at 0.0701 kg CO2 eq., green ammonia PV at 0.0197 kg CO2 eq., green ammonia wind at 0.01039 kg CO2 eq., pink ammonia at 0.00565 kg CO2 eq., and diesel (including its stoichiometric combustion) at 0.0851 kg CO2 eq. The life cycle assessment (LCA) was performed using the lca for experts (GaBi) software, with Sphera's comprehensive Managed LCA Content as the primary data source for the life cycle inventory. The study indicates nuclear and renewable-based routes to be the best options in terms of the climate change and human health categories; however, their high impact on freshwater consumption and ecosystem quality is revealed. Still, ammonia is proven to be an effective solution toward decarbonization, as compared to diesel, given its blue, green, or pink source.

Funder

Narodowe Centrum Badan i Rozwoju

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3