Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach

Author:

Bihamta Toosi Neda,Soffianian Ali Reza,Fakheran Sima,Pourmanafi Saeied,Ginzler ChristianORCID,T. Waser LarsORCID

Abstract

Mangrove forests grow in the inter-tidal areas along coastlines, rivers, and tidal lands. They are highly productive ecosystems and provide numerous ecological and economic goods and services for humans. In order to develop programs for applying guided conservation and enhancing ecosystem management, accurate and regularly updated maps on their distribution, extent, and species composition are needed. Recent advances in remote sensing techniques have made it possible to gather the required information about mangrove ecosystems. Since costs are a limiting factor in generating land cover maps, the latest remote sensing techniques are advantageous. In this study, we investigated the potential of combining Sentinel-2 and Worldview-2 data to classify eight land cover classes in a mangrove ecosystem in Iran with an area of 768 km2. The upscaling approach comprises (i) extraction of reflectance values from Worldview-2 images, (ii) segmentation based on spectral and spatial features, and (iii) wall-to-wall prediction of the land cover based on Sentinel-2 images. We used an upscaling approach to minimize the costs of commercial satellite images for collecting reference data and to focus on freely available satellite data for mapping land cover classes of mangrove ecosystems. The approach resulted in a 65.5% overall accuracy and a kappa coefficient of 0.63, and it produced the highest accuracies for deep water and closed mangrove canopy cover. Mapping accuracies improved with this approach, resulting in medium overall accuracy even though the user’s accuracy of some classes, such as tidal zone and shallow water, was low. Conservation and sustainable management in these ecosystems can be improved in the future.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3