Abstract
Observation of the spatial distribution of cloud optical thickness (COT) is useful for the prediction and diagnosis of photovoltaic power generation. However, there is not a one-to-one relationship between transmitted radiance and COT (so-called COT ambiguity), and it is difficult to estimate COT because of three-dimensional (3D) radiative transfer effects. We propose a method to train a convolutional neural network (CNN) based on a 3D radiative transfer model, which enables the quick estimation of the slant-column COT (SCOT) distribution from the image of a ground-mounted radiometrically calibrated digital camera. The CNN retrieves the SCOT spatial distribution using spectral features and spatial contexts. An evaluation of the method using synthetic data shows a high accuracy with a mean absolute percentage error of 18% in the SCOT range of 1–100, greatly reducing the influence of the 3D radiative effect. As an initial analysis result, COT is estimated from a sky image taken by a digital camera, and a high correlation is shown with the effective COT estimated using a pyranometer. The discrepancy between the two is reasonable, considering the difference in the size of the field of view, the space–time averaging method, and the 3D radiative effect.
Funder
Japan Society for the Promotion of Science
Japan Aerospace Exploration Agency
Japan Science and Technology Agency
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献