Direct Numerical Simulations on Jets during the Propagation and Break down of Internal Solitary Waves on a Slope

Author:

Xu Jin,Avital Eldad J.,Wang Lingling

Abstract

Jet flows often have an important role in the water environment. The aim of this research is to study the dilution of jets due to complex velocity fields induced by internal solitary waves in stratified water. Direct numerical simulations are used to study vertical jet flows during the propagation and breaking of internal solitary waves (ISWs) with elevation type on a slope. Energy analysis shows that the internal interface is able to absorb kinetic energy from the jet and that for Re < 10,000 with Ri > 3.7, the ISWs can stay stable during the propagation within the presence of jet flows. The vortices jointly induced by the jets and the ISWs are observed at the bottom behind the ISW’s crest. The transport of the jet’s emitted scalar by the ISWs can be divided into two parts; some is transported by the moving interface and the rest by the bottom vortices. The ultimate transport length scales of two types are defined, and it is found that when the center of the jet inlet approaches the slope, the extension of the bottom vortices into the slope will lead to strong mixing. That causes increasing scalar concentration over the slope of the scalar that originated from the jet.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3