A Sustainable Way to Determine the Water Content in Torreya grandis Kernels Based on Near-Infrared Spectroscopy

Author:

Xiang Jiankai12ORCID,Huang Yu1,Guan Shihao1,Shang Yuqian3,Bao Liwei1,Yan Xiaojie1,Hassan Muhammad4,Xu Lijun12ORCID,Zhao Chao1ORCID

Affiliation:

1. College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China

3. College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China

4. US-Pakistan Centre for Advanced Studies in Energy, National University of Science and Technology, Islamabad 44000, Pakistan

Abstract

Water content is an important parameter of Torreya grandis (T. grandis) kernels that affects their quality, processing and storage. The traditional drying method for water content determination is time-consuming and laborious. Water content detection based on modern analytical techniques such as spectroscopy is accomplished in a fast, accurate, nondestructive, and sustainable way. The aim of this study was to realize the rapid detection of the water content in T. grandis kernels using near-infrared spectroscopy. The water content of T. grandis kernels was measured by the traditional drying method. Meanwhile, the corresponding near-infrared spectra of these samples were collected. A quantitative water content model of T. grandis kernels was established using the full spectrum after 10 outlier samples were removed by the Mahalanobis distance method and concentration residual analysis. The results showed that the prediction model developed from the partial least squares regression (PLS) method after the spectra were pretreated by the standard normal variate transform (SNV) achieved optimal performance. The correlation coefficient of the calibration set (R2c) and the cross-validation set (R2cv) were 0.9879 and 0.9782, respectively, and the root mean square error of the calibration set (RMSEC) and the root mean square error of the cross-validation set (RMSECV) were 0.0029 and 0.0039, respectively. Thus, near-infrared spectroscopy is feasible for the rapid nondestructive detection of the water content in T. grandis seeds. Detecting the water content of agricultural and forestry products in such an environmentally friendly manner is conducive to the sustainable development of agriculture.

Funder

National Undergraduate Training Program for Innovation and Entrepreneurship, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3