Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events

Author:

AlHaddad Ulaa1ORCID,Basuhail Abdullah1,Khemakhem Maher1ORCID,Eassa Fathy Elbouraey1,Jambi Kamal1

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia

Abstract

The critical challenge of enhancing the resilience and sustainability of energy management systems has arisen due to historical outages. A potentially effective strategy for addressing outages in energy grids involves preparing for future failures resulting from line vulnerability or grid disruptions. As a result, many researchers have undertaken investigations to develop machine learning-based methodologies for outage forecasting for smart grids. This research paper proposed applying ensemble methods to forecast the conditions of smart grid devices during extreme weather events to enhance the resilience of energy grids. In this study, we evaluate the efficacy of five machine learning algorithms, namely support vector machines (SVM), artificial neural networks (ANN), logistic regression (LR), decision tree (DT), and Naive Bayes (NB), by utilizing the bagging ensemble technique. The results demonstrate a remarkable accuracy rate of 99.98%, with a true positive rate of 99.6% and a false positive rate of 0.01%. This research establishes a foundation for implementing sustainable energy integration into electrical networks by accurately predicting the occurrence of damaged components in the energy grid caused by extreme weather events. Moreover, it enables operators to manage the energy generated effectively and facilitates the achievement of energy production efficiency. Our research contributes to energy management systems using ensemble methods to predict grid vulnerabilities. This advancement lays the foundation for developing resilient and dependable energy infrastructure capable of withstanding unfavorable weather conditions and assisting in achieving energy production efficiency goals.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3