Data-Driven Virtual Sensing for Electrochemical Sensors

Author:

Sangiorgi Lucia1ORCID,Sberveglieri Veronica23ORCID,Carnevale Claudio1,De Nardi Sabrina1ORCID,Nunez-Carmona Estefanía2ORCID,Raccagni Sara1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy

2. National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 42124 Reggio Emilia, Italy

3. Nano Sensor System srl (NASYS), Via Alfonso Catalani, 42124 Reggio Emilia, Italy

Abstract

In recent years, the application of machine learning for virtual sensing has revolutionized the monitoring and management of information. In particular, electrochemical sensors generate large amounts of data, allowing the application of complex machine learning/AI models able to (1) reproduce the measured data and (2) predict and manage faults in the measuring sensor. In this work, data-driven models based on an autoregressive model and an artificial neural network have been identified and used to (i) evaluate sensor redundancy and (ii) predict and manage faults in the context of electrochemical sensors for the measurement of ethanol. The approach shows encouraging results in terms of both performance and sensitivity analyses, allowing for the reconstruction of the values measured by two sensors in a series of six sensors with different dopant levels and to reproduce their values after a fault.

Publisher

MDPI AG

Reference26 articles.

1. Fortuna, L., Graziani, S., Rizzo, A., and Xibilia, M.G. (2007). Soft Sensors for Monitoring and Control of Industrial Processes, Advances in Industrial Control; Springer.

2. Parallel Computing and SGD-Based DPMM For Soft Sensor Development With Large-Scale Semisupervised Data;Shao;IEEE Trans. Ind. Electron.,2019

3. Enhanced Virtual Sample Generation Based on Manifold Features: Applications to Developing Soft Sensor Using Small Data;He;ISA Trans.,2022

4. Process Data Analytics in the Era of Big Data;Qin;AIChE J.,2014

5. Virtual Temperature Sensor Using Support Vector Machines for Autonomous Uninterrupted Automotive HVAC Systems Control;Pastre;Int. J. Refrig.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3