Active Exploration by Chance-Constrained Optimization for Voltage Regulation with Reinforcement Learning

Author:

Ding Zhenhuan,Huang Xiaoge,Liu ZhaoORCID

Abstract

Voltage regulation in distribution networks encounters a challenge of handling uncertainties caused by the high penetration of photovoltaics (PV). This research proposes an active exploration (AE) method based on reinforcement learning (RL) to respond to the uncertainties by regulating the voltage of a distribution network with battery energy storage systems (BESS). The proposed method integrates engineering knowledge to accelerate the training process of RL. The engineering knowledge is the chance-constrained optimization. We formulate the problem in a chance-constrained optimization with a linear load flow approximation. The optimization results are used to guide the action selection of the exploration for improving training efficiency and reducing the conserveness characteristic. The comparison of methods focuses on how BESSs are used, training efficiency, and robustness under varying uncertainties and BESS sizes. We implement the proposed algorithm, a chance-constrained optimization, and a traditional Q-learning in the IEEE 13 Node Test Feeder. Our evaluation shows that the proposed AE method has a better response to the training efficiency compared to traditional Q-learning. Meanwhile, the proposed method has advantages in BESS usage in conserveness compared to the chance-constrained optimization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Voltage Control Method for Electric Vehicle Charging in the New Power System;2023 5th International Conference on Electrical Engineering and Control Technologies (CEECT);2023-12-15

2. Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario;Energies;2022-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3