Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario

Author:

Adu James Amankwah,Berizzi Alberto,Conte FrancescoORCID,D’Agostino FabioORCID,Ilea ValentinORCID,Napolitano FabioORCID,Pontecorvo Tadeo,Vicario AndreaORCID

Abstract

This paper summarizes the results of a power system stability analysis realized for the EU project OSMOSE. The case study is the electrical network of Sicily, one of the two main islands of Italy, in a scenario forecasted for 2050, with a large penetration of renewable generation. The objective is to establish if angle and voltage stabilities can be guaranteed despite the loss of the inertia and the regulation services provided today by traditional thermal power plants. To replace these resources, new flexibility services, potentially provided by renewable energy power plants, battery energy storage systems, and flexible loads, are taken into account. A highly detailed dynamical model of the electrical grid, provided by the same transmission system operator who manages the system, is modified to fit with the 2050 scenario and integrated with the models of the mentioned flexibility services. Thanks to this dynamic model, an extensive simulation analysis on large and small perturbation angle stability and voltage stability is carried out. Results show that stability can be guaranteed, but the use of a suitable combination of the new flexibility services is mandatory.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Impact of Renewable Generation on the Sicilian Power System in Near-Future Scenarios: A Case Study;Energies;2024-07-08

2. Comparison of Plant-Level and Unit-Level Virtual Inertia for BESS Power Converters;2024 IEEE Texas Power and Energy Conference (TPEC);2024-02-12

3. Peak Shaving Approach of Distribution Network;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3