An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared and RGB Images Acquired during UGV Robot Inspection

Author:

Dabek PrzemyslawORCID,Szrek JaroslawORCID,Zimroz RadoslawORCID,Wodecki JacekORCID

Abstract

Complex mechanical systems used in the mining industry for efficient raw materials extraction require proper maintenance. Especially in a deep underground mine, the regular inspection of machines operating in extremely harsh conditions is challenging, thus, monitoring systems and autonomous inspection robots are becoming more and more popular. In the paper, it is proposed to use a mobile unmanned ground vehicle (UGV) platform equipped with various data acquisition systems for supporting inspection procedures. Although maintenance staff with appropriate experience are able to identify problems almost immediately, due to mentioned harsh conditions such as temperature, humidity, poisonous gas risk, etc., their presence in dangerous areas is limited. Thus, it is recommended to use inspection robots collecting data and appropriate algorithms for their processing. In this paper, the authors propose red-green-blue (RGB) and infrared (IR) image fusion to detect overheated idlers. An original procedure for image processing is proposed, that exploits some characteristic features of conveyors to pre-process the RGB image to minimize non-informative components in the pictures collected by the robot. Then, the authors use this result for IR image processing to improve SNR and finally detect hot spots in IR image. The experiments have been performed on real conveyors operating in industrial conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3