Computer Vision-Based Path Planning for Robot Arms in Three-Dimensional Workspaces Using Q-Learning and Neural Networks

Author:

Abdi AliORCID,Ranjbar Mohammad HassanORCID,Park Ju HongORCID

Abstract

Computer vision-based path planning can play a crucial role in numerous technologically driven smart applications. Although various path planning methods have been proposed, limitations, such as unreliable three-dimensional (3D) localization of objects in a workspace, time-consuming computational processes, and limited two-dimensional workspaces, remain. Studies to address these problems have achieved some success, but many of these problems persist. Therefore, in this study, which is an extension of our previous paper, a novel path planning approach that combined computer vision, Q-learning, and neural networks was developed to overcome these limitations. The proposed computer vision-neural network algorithm was fed by two images from two views to obtain accurate spatial coordinates of objects in real time. Next, Q-learning was used to determine a sequence of simple actions: up, down, left, right, backward, and forward, from the start point to the target point in a 3D workspace. Finally, a trained neural network was used to determine a sequence of joint angles according to the identified actions. Simulation and experimental test results revealed that the proposed combination of 3D object detection, an agent-environment interaction in the Q-learning phase, and simple joint angle computation by trained neural networks considerably alleviated the limitations of previous studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path planning of a 6-DOF measuring robot with a direction guidance RRT method;Expert Systems with Applications;2024-03

2. Integrating Computer Vision in Exosuits for Adaptive Support and Reduced Muscle Strain in Industrial Environments;IEEE Robotics and Automation Letters;2024-01

3. Investigating the Performance and Reliability, of the Q-Learning Algorithm in Various Unknown Environments;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

4. Experiments with cooperative robots that can detect object’s shape, color and size to perform tasks in industrial workplaces;International Journal of Intelligent Robotics and Applications;2023-11-25

5. Tool Path Adaptation of a Cobot Using Supervisory Control with Machine Learning;2023 11th International Conference on Control, Mechatronics and Automation (ICCMA);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3