Abstract
Two-dimensional (2D) nanomaterials have attracted much attention for lubrication enhancement of grease. It is difficult to disperse nanosheets in viscous grease and the lubrication performances of grease under harsh conditions urgently need to be improved. In this study, the 2D talc nanosheets are modified by a silane coupling agent with the assistance of high-energy ball milling, which can stably disperse in grease. The thickness and size of the talc nanosheet are about 20 nm and 2 µm. The silane coupling agent is successfully grafted on the surface of talc. Using the modified-talc nanosheet, the coefficient of friction and wear depth can be reduced by 40% and 66% under high temperature (150 °C) and high load (3.5 GPa), respectively. The enhancement of the lubrication and anti-wear performance is attributed to the boundary adsorbed tribofilm of talc achieving a repairing effect of the friction interfaces, the repairing effect of talc on the friction interfaces. This work provides green, economical guidance for developing natural lubricant additives and has great potential in sustainable lubrication.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Tribology Science Fund of State Key Laboratory of Tribology
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献