Electrical Resistance Evolution of Graphite and Talc Geological Heterostructures under Progressive Metamorphism

Author:

Nobre Augusto Gonçalves1ORCID,de Andrade Fabio Ramos Dias2ORCID,Salazar-Naranjo Andres Fabian2ORCID,Rigue Josue Neroti1ORCID,da Silva Ricardo Barreto1,Vlach Silvio Roberto Farias2ORCID,Ando Romulo Augusto3ORCID

Affiliation:

1. Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil

2. Institute of Geosciences, University of São Paulo, São Paulo 05508-080, SP, Brazil

3. Institute of Chemistry, University of São Paulo, São Paulo 05508-900, SP, Brazil

Abstract

The electrical properties of isolated graphene established precedents for studies of electrical superconducting materials at room temperature. After the discovery of stabilized graphene and graphite nanoplatelets in a geological context, the interest in characterizing the properties of these minerals arose. This work evaluates the electrical resistance evolution of mineral graphite and talc heterostructures under progressive metamorphism simulated in the laboratory. The experiments were conducted on an end-loaded piston-cylinder apparatus. This equipment allows for the application of equal pressure in all sample directions (lithostatic pressure) and heating, simulating geological phenomena. The behavior of two sets of mineral samples were compared: graphite and talc in billets and powder. Samples in billets were submitted to treatments at 400 °C and 4 kbar; 400 °C and 6 kbar; and 700 °C and 9 kbar. The powder samples were subjected to 700 °C and 9 kbar, with two ways of disposing the mineral powders (mixed and in adjacent contact) beyond 900 °C and 9 kbar (in adjacent contact). The results show that the samples in billets had lower electrical resistance when compared to the powder samples. The lowest electrical resistance was observed in the sample treated at 400 °C and 6 kbar, conditions that are consistent with metamorphic mineral assemblage observed in the field. Powdered samples showed better cleavage efficiency during the experiment, resulting in thinner flakes and even graphene, as pointed out by Raman spectroscopy. However, these flakes were not communicating, which resulted in high electrical resistance, due to the need for an electrical current to pass through the talc, resulting in a Joule effect. The maximum electrical resistance obtained in the experiment was obtained in the sample submitted to 900 °C, in which talc decomposed into other mineral phases that were even more electrically insulating. This work demonstrates that electrical resistance prospecting can be an efficient tool to identify potential target rocks with preserved mineral nanometric heterostructures that can form an important raw material for the nanotechnology industry.

Publisher

MDPI AG

Subject

General Medicine

Reference66 articles.

1. The rise of graphene;Geim;Nat. Mater.,2007

2. Electric Field Effect in Atomically Thin Carbon Films;Novoselov;Science,2004

3. Graphene Transistors: Status, Prospects, and Problems;Schwierz;Proc. IEEE,2013

4. Graphene research and their outputs: Status and prospect;Tiwari;J. Sci. Adv. Mater. Devices,2020

5. Graphene: Status and Prospects;Geim;Science,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3