Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects

Author:

Li Wenhua,Tian Wenchao

Abstract

Due to the limitation of graphene processing technology, the prepared graphene inevitably contains various defects. The defects will have a particular influence on the macroscopic characteristics of the graphene. In this paper, the defect-based graphene nanoresonators are studied. In this study, the resonant properties of graphene were investigated via molecular dynamic simulations. The effect of vacancy defects and hole defects at different positions, numbers, and concentrations on the resonance frequency of graphene nanoribbons was studied. The results indicated that single monatomic vacancy has no effect on graphene resonant frequency, and the concentration of the resonant frequency of graphene decreases almost linearly with the increase of single-atom vacancy concentration. When the vacancy concentration is 5%, the resonance frequency is reduced by 12.77% compared to the perfect graphene. Holes on the graphene cause the resonance frequency to decrease. As the circular hole defect is closer to the center of the graphene nanoribbon, not only does its resonant frequency increase, but the tuning range is also expanded accordingly. Under the external force of 10.715 nN, the resonant frequency of graphene reaches 429.57 GHz when the circular hole is located at the center of the graphene nanoribbon, which is 40 GHz lower than that of single vacancy defect graphene. When the circular hole is close to the fixed end of graphene, the resonant frequency is 379.62 GHz, which is 90 GHz lower than that of single vacancy graphene. When the hole defect is at the center of nanoribbon, the frequency tunable range of graphene reaches 120 GHz. The tunable frequency range of graphene is 100.12 GHz when the hole defect is near the fixed ends of the graphene nanoribbon. This work is of great significance for design and performance optimization of graphene-based nanoelectro-mechanical system (NEMS) resonators.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3