Self-Bending Behavior and Varying Bending Stiffness of Black Phosphorus/Molybdenum Disulfide (BP/MoS2) Heterostructure

Author:

Li Dong,Zheng YonggangORCID,Zhang Hongwu,Ye HongfeiORCID

Abstract

Vertically-stacked black phosphorus/molybdenum disulfide (BP/MoS2) heterostructures have broad prospects in flexible electronics. Bending is a common and highly concerned deformation for these flexible devices. However, the discrepancy in structures and properties among the components of 2D heterostructures often induces complex bending deformations. Here, the bending behaviors of BP, MoS2 and BP/MoS2 are investigated based on a molecular dynamics simulation. Compared with the constant bending stiffness of individual BP and MoS2, that of BP/MoS2 varies with the bending angle. Notably, a self-bending configuration induced by the lattice mismatch and size difference is found in BP/MoS2. The corresponding self-bending amplitude depends on the degree of size difference of each component and the “soft/hard” competition between them. Moreover, the size difference leads to a weakened bending stiffness, which is ascribed to the reduction in interlayer interaction. A prediction formula is proposed to evaluate the bending stiffness of BP/MoS2 with the size difference. This finding reveals novel ways for regulating the bending properties of 2D heterostructures, including the bending angle, characteristic size and stacking order. It offers an effective strategy for designing flexible devices with tunable bending performance.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3